

ENGINEERING SPECIFICATION: TSHW & TSBW Ranges

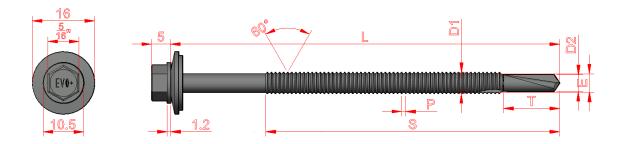
0.0 - Contents:

	ı	r	r	1	Table 00: Contents	1
Sec.	S- Sec.	S-S- Sec.	S-S-S- Sec.	S-S-S- Sec.	Title	Page(s)
1.0	000.			000:	Dimensional and metrological properties	02
2.0					Standard product details	03
3.0					Installation instructions	03
4.0					General mechanical properties of the screws	04
					Mechanical performance of the screws in various	
5.0					substrates	05-on
	5.1				Hot-rolled mild structural steel (as per BS EN 10025-1)	
		5.1.1			4.8mm diameter products	
			5.1.1.1		TEK® 3 products	
				5.1.1.1.1	Withdrawal resistance	06
				5.1.1.1.2	Lap-shearing resistance	07
		5.1.2			5.5mm diameter products	
			5.1.2.1		TEK® 3 products	
				5.1.2.1.1	Withdrawal resistance	08
				5.1.2.1.2	Lap-shearing resistance	09
			5.1.2.2		TEK® 5 products	
				5.1.2.2.1	Withdrawal resistance	10
				5.1.2.2.2	Lap-shearing resistance	11
		5.1.3			6.3mm diameter products	
			5.1.3.1		TEK® 3 products	
				5.1.3.1.1	Withdrawal resistance	12
				5.1.3.1.2	Lap-shearing resistance	13
			5.1.3.2		TEK® 5 products	
				5.1.3.2.1	Withdrawal resistance	14
				5.1.3.2.2	Lap-shearing resistance	15
	5.2				Cold-rolled mild structural steel (as per BS EN 10346)	
		5.2.1			TEK® 3 products	
			5.2.1.1		4.8mm diameter products	
				5.2.1.1.1	Withdrawal resistance	16
				5.2.1.1.2	Lap-shearing resistance	17
			5.2.1.2		5.5mm diameter products	
				5.2.1.2.1	Withdrawal resistance	18
				5.2.1.2.2	Lap-shearing resistance	19
			5.2.1.3		6.3mm diameter products	
				5.2.1.3.1	Withdrawal resistance	20
				5.2.1.3.2	Lap-shearing resistance	21
6.0					Normative references, notes and disclaimer	22-24

Page 1 of 24

Engineering Specification: TSHW & TSBW Ranges (Ver 2.0 – June 2019)

©Evolution Fasteners (UK) Ltd (2019), Clyde Gateway Trade Park, Dalmarnock Road, Glasgow, G73 1AN. Tests marked "NC" in this document are not included in the UKAS schedule of accreditation for our laboratory. Opinions and interpretations expressed herein are outside the scope of UKAS accreditation. This document shall not be reproduced except in full, without written approval. This document does not absolve any third party of their obligations under the Building Regulations, the Construction (Design and Management) Regulations or any other burden. This document is provided for educational purposes only and is provided without prejudice, without recourse, non-assumptist, errors and omissions excepted, no assured value, no liability, all rights reserved.



1.0 - Dimensional and metrological properties:

	Table 01: D	Dimensional pr	operties	inc. toler	ances (in n	nm)		
SK	U¹			-		D1	D2	-
w/o washer	w/ washer	L	S	T	Р	D1	D2	E
		TEK [®]	3 Produ	cts				
TSHW4.8-16-3	N/A	16.0 ± 1.0				4.62 – 4.80	3.43 – 3.58	3.85 – 3.95
TSHW5.5-19-3	N/A	19.0 ± 1.0						
TSHW5.5-25-3	TSBW5.5-26-3	25.0 ± 2.0						
TSHW5.5-32-3	TSBW5.5-32-3	32.0 ± 1.0	FULL					
TSHW5.5-38-3	TSBW5.5-38-3	38.0 ± 1.0				F 21	2.00	4.27
TSHW5.5-50-3	TSBW5.5-50-3	50.0 ± 1.0		7.50 –	1.81	5.31 – 5.46	3.99 – 4.17	4.37 – 4.50
TSHW5.5-60-3	TSBW5.5-60-3	60.0 ± 1.5		9.00	(14 TPI)	5.40	4.17	4.50
TSHW5.5-75-3	TSBW5.5-75-3	75.0 ± 1.5						
TSHW5.5-100-3	TSBW5.5-100-3	100.0 ± 1.5	75.0					
TSHW5.5-125-3	TSBW5.5-125-3	125.0 ± 2.0	± 1.5					
TSHW6.3-25-3	N/A	25.0 ± 1.0				6.03 –	4.70 -	F 40
TSHW6.3-38-3	N/A	38.0 ± 1.0	FULL			6.28	4.70 -	5.40 – 5.55
TSHW6.3-50-3	N/A	50.0 ± 1.0				0.20	4.00	5.55
		TEK®	5 Produ	cts				
TSHW5.5-32-5	N/A	32.0 ± 1.0						
TSHW5.5-38-5	TSBW5.5-38-5	38.0 ± 1.0						
TSHW5.5-50-5	TSBW5.5-50-5	50.0 ± 1.0	FULL					
N/A	TSBW5.5-60-5	60.0 ± 1.5	FULL	14.50	1.06	5.31 –	4.56 –	4.80 -
N/A	TSBW5.5-70-5	70.0 ± 1.5		14.50	(24 TPI)	5.49	4.70	5.00
TSHW5.5-75-5	N/A	75.0 ± 1.5		15.50				
N/A	TSBW5.5-80-5	80.0 ± 1.5	75.0	13.30				
TSHW5.5-100-5	TSBW5.5-100-5	100.0 ± 1.5	± 1.5					
TSHW6.3-38-5	N/A	38.0 ± 1.0	FULL		1.27	6.17 –	4.81 -	5.65 –
TSHW6.3-50-5	N/A	50.0 ± 1.0	FULL		(20 TPI)	6.35	4.93	5.90

Page 2 of 24

¹ SKU = Stock Keeping Unit (synonymous with "part number").

2.0 - Standard product details:

	Table 02: Product Details					
Designed for/ purpose:	Fastening steel sections, sheeting, panels etc to steel structural sections.					
Head style and drive:	5/16" hexagonal (male) socket with flange.					
Thread form:	TEK® 3 SKUs = Coarse (1.80mm pitch),					
inread form:	TEK® 5 SKUs = Fine (1.06mm or 1.27mm pitch).					
Material type and grade:	SAE C1022 Carbon Steel (Hardened ≥ 55 HRC).					
	 EvoShield® 500 proprietary ceramic coating, 					
Coating and corrosion	2. ≥ 500 Hour corrosion resistance (when tested in 5% NaCl					
resistance:	accelerated corrosion test as per BS EN ISO 9227).					
resistance.	3. For use in atmospheric corrosivity categories of C3 (limited), C2 and					
	C1 as per BS EN ISO 12994-2 and BS EN ISO 9223.					
Washer details ² :	Compression disc = 1.0mm thick galvanised steel (16mm OD & 7.6mm ID),					
washer details :	Gasket = 2.0mm thick EPDM (Ethylene propylene diene monomer).					

NOTE: Readers should always check the Evolution Fasteners (UK) Ltd website³ for the latest version of this document.

3.0 - Installation instructions 4:

NOTE: Failure to abide by these instructions may void any warranty provided by Evolution Fasteners (UK)

Ltd. This document does not alleviate the user, designer or any other party from their respective obligations under the terms of the Warranty.

The use of impact tooling voids the Warranty.

- 1. Clear installation area of dirt and debris and ensure that there are no other contaminating substances (i.e. oil, grease, etc),
- 2. Using a non-impacting TEK screwdriver (such as Makita FS2500), insert the screw into the fixture and substrate material perpendicularly (± 5° from the normal) using not greater than 1,500 RPM and a steady pressure on the tooling only (do not force the tool, allow the screw to cut),
- 3. Stop inserting the screw once the underside of the flange makes contact with the topside of the fixture material for non-washered screws. For washered screws continue inserting until the compression disc of the washer changes from convex to flat. There should be no torque applied to the fasteners post-installation.

Page **3** of **24**

² Only relates to products prefixed with BMBW,

³ Latest versions can be found at http://www.evolutionfasteners.co.uk,

⁴ Video instructions available on our YouTube™ channel (Evolution Technical Services and Laboratory),

⁵ For further information, refer to the Evolution Product Warranty document hosted on our website.

4.0 - General mechanical properties of the screws:

Table 03: Mecha	nical Prop	erties for (C1022 Carl	on Steel S	Screws ⁶		
			ı	Nominal D	iameter/	TEK® Poin	t
Parameter	Symbol	Unit	4.8mm	5.5mm	6.3mm	5.5mm	6.3mm
			TEK® 3	TEK® 3	TEK® 3	TEK® 5	TEK® 5
Material yield strength ⁷	$f_{\mathcal{V}}$	N/mm ²			970		
Ultimate tensile strength ⁸	R _m	N/mm ²			1,220		
Maximum force at elastic limit	F _{eH}	N	8,960	12,120	16,820	15,840	17,620
Ultimate force at plastic limit	F _m	N	11,270	15,250	21,160	19,9 <mark>20</mark>	22,160
Cross-sectional area	S ₀	mm ²	9.24	12.50	17.35	16.3 <mark>3</mark>	18.17
Young's modulus of elasticity	Ε	N/mm ²			203,000		
Elastic section modulus	WeL	mm³	4.14	6.14	7.03	9.56	10.95
Bending moment capacity	$M_{c,Rd}$	Nm	2.97	4.76	5.47	7.42	8.53
Lateral-torsional buckling resistance	$M_{b,Rd}$	Nm	1.38	2.05	2.36	3.19	3.67
Polar moment of inertia	J	mm ⁴	14.40	24.87	28.60	43.93	50.52
Modulus of rigidity/ Shear modulus ⁹	G	N/mm ²			80,000		•
Ultimate force at shear failure 10	V _m	N	5,530	7,270	8,360	9,670	11,120
Ultimate torsional strength ¹¹	τ _m	Nm	14.56	15.12	17.39	16.68	19.18

Page 4 of 24

Engineering Specification: TSHW & TSBW Ranges (Ver 2.0 – June 2019)

©Evolution Fasteners (UK) Ltd (2019), Clyde Gateway Trade Park, Dalmarnock Road, Glasgow, G73 1AN. Tests marked "NC" in this document are not included in the UKAS schedule of accreditation for our laboratory. Opinions and interpretations expressed herein are outside the scope of UKAS accreditation. This document shall not be reproduced except in full, without written approval. This document does not absolve any third party of their obligations under the Building Regulations, the Construction (Design and Management) Regulations or any other burden. This document is provided for educational purposes only and is provided without prejudice, without recourse, non-assumptist, errors and omissions excepted, no assured value, no liability, all rights reserved.

 $^{^{6}}$ $X_{st,m} = \left(\left(\sum X_{st,m} \middle/ X_{n} \right) - 2 \cdot \sigma \right)$, rounded down to nearest 10 N,

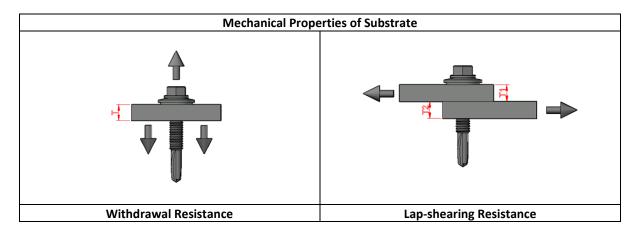
⁷ Derived from empirical testing performed to BS EN ISO 6892-1 (for the purposes of this document, $f_y = R_{eH}$),

⁸ Derived from empirical testing performed to BS EN ISO 6892-1,

⁹ As specified in ASTM A240/ A240M,

¹⁰ Derived from empirical testing performed to MIL-STD-1312,

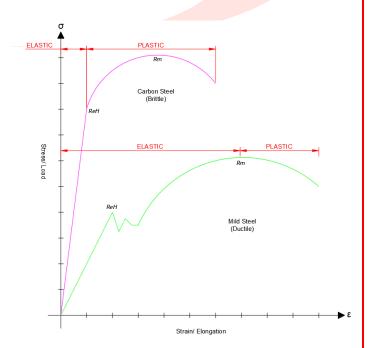
¹¹ Derived from empirical testing performed to BS EN ISO 10666.



5.0 - Mechanical performance of the screws in various substrates:

IMPORTANT NOTICE:

In the following tables, there are two values supplied for each grade of steel at a given thickness, t, these values refer to:


Non-bracketed values =
[Square-bracketed] values =
"Yield" =
"Ultimate" =

Load where the substrate reaches upper yield strength,
Load where the substrate reaches ultimate tensile strength,
Load where the fastener reaches upper yield strength (see table 03),
Load where the fastener reaches ultimate tensile strength (see table 03).

It is recommended by Evolution Fasteners (UK) Ltd that designers ensure that the screws remain in their elastic phase and as such limit themselves to F_{eH} as per Table 03.

Users of this document should be aware that they have to consider the fact that the mechanical properties of the screws and the substrate they are being used in are very different. An example stress/ strain graph is included to the side (indicative use only) to illustrate typical stress/ strain patterns in various steel types.

Carbon steel is generally more brittle and higher tensile strength than either mild or austenitic stainless steels: which are more ductile and lower tensile strength.

Page 5 of 24

Engineering Specification: TSHW & TSBW Ranges (Ver 2.0 - June 2019)

©Evolution Fasteners (UK) Ltd (2019), Clyde Gateway Trade Park, Dalmarnock Road, Glasgow, G73 1AN. Tests marked "NC" in this document are not included in the UKAS schedule of accreditation for our laboratory. Opinions and interpretations expressed herein are outside the scope of UKAS accreditation. This document shall not be reproduced except in full, without written approval. This document does not absolve any third party of their obligations under the Building Regulations, the Construction (Design and Management) Regulations or any other burden. This document is provided for educational purposes only and is provided without prejudice, without recourse, non-assumptist, errors and omissions excepted, no assured value, no liability, all rights reserved.

5.1 - Hot-rolled mild structural steel (as per BS EN 10025-1):

5.1.1 - 4.8mm diameter products:

5.1.1.1 - TEK® 3 products:

5.1.1.1.1 - Withdrawal resistance:

Table 04: Ch	naracteristic w	ithdrawal res	sistance ^{12,13} of	f TEK® 3 prodι	ıcts (of 4.8mm	nominal diar	meter) from
		hot-rolled	mild structu	ral steels ¹⁴ (in	Newtons)		
Grade			Sub	strate thickne	ess, t		
Grade	1.2mm	1.5mm	2.0mm	2.5mm	3.0mm	4.0mm	5.0mm
S235JR	700	880	1,170	1,470	1,760	2,350	2,940
3233JK	[1,080]	[1,350]	[1,800]	[2,250]	[2,700]	[3,600]	[4,510]
COZEID	820	1,030	1,370	1,720	2,060	2,750	3,440
S275JR	[1,230]	[1,540]	[2,050]	[2,560]	[3,080]	[4,100]	[5,130]
S355JR	1,060	1,330	1,770	2,220	2,660	3,550	4,440
222214	[1,410]	[1,760]	[2,350]	[2,940]	[3,530]	[4,710]	[5,880]
C4E010	1,290	1,610	2,150	2,690	3,230	4,310	5,380
S450J0	[1,650]	[2,060]	[2,750]	[3,440]	[4,130]	[5,510]	[6,890]
E295	880	1,100	1,470	1,840	2,210	2,950	3,690
E295	[1,470]	[1,840]	[2,450]	[3,060]	[3,680]	[4,910]	[6,130]
E335	1,000	1,250	1,670	2,090	2,510	3,350	4,190
E333	[1,770]	[2,210]	[2,950]	[3,690]	[4,430]	[5,910]	[7,390]
E360	1,080	1,350	1,800	2,250	2,700	2,600	4,510
£300	[2,070]	[2,590]	[3,450]	[4,320]	[5,180]	[6,910]	[8,640]

The loads presented without brackets relate to the failure point when the female thread cut in the substrate reaches its' elastic limit (i.e. past that point the substrate is plastic).

The loads presented with square brackets relate to the failure point when the female thread cut in the substrate reaches its' plastic limit (i.e. the maximum load the substrate can achieve before it fails).

It is important to note that in all cases in Table 04, the fastener itself **does not fail**. Rather, it is the substrate which fails around the fastener.

Page **6** of **24**

 $^{^{12}}$ Values without brackets refer to characteristic value at R_{eH} of substrate and values in [brackets] refer to characteristic value at R_m of substrate (tested in accordance with BS EN ISO 6892-1), rounded down to nearest 10 N,

¹³ Derived from empirical tests as per BS EN 14566: 2008 & A1: 2012,

¹⁴ Conforming to BS EN 10025-1,

5.1.1.1.2 - Lap-shearing resistance:

	naracteristic la		l mild structur	-	-					
Grade	Substrate thickness, t									
Grade	1.2mm	1.5mm	2.0mm	2.5mm	3.0mm	4.0mm	5.0mm			
S235JR	420	530	700	880	1,060	1,410	1,760			
	[640]	[810]	[1,080]	[1,350]	[1,620]	[2,160]	[2,700]			
S275JR	490	620	820	1,030	1,240	1,650	2,060			
	[740]	[920]	[1,230]	[1,540]	[1,840]	[2,460]	[3,080]			
CAFFIR	640	800	1,060	1,330	1,600	2,130	2,660			
S355JR	[840]	[1,060]	[1,410]	[1,760]	[2,120]	[2,820]	[3,530]			
S450J0	770	970	1,290	1,610	1,930	2,580	3,230			
345010	[990]	[1,240]	[1,650]	[2,060]	[2,480]	[3,300]	[4,130]			
E295	530	660	880	1,100	1,330	1,770	2,210			
E295	[880]	[1,100]	[1,470]	[1,840]	[2,210]	[2,940]	[3,680]			
гээг	600	750	1,000	1,250	1,510	2,010	2,510			
E335	[1,060]	[1,330]	[1,770]	[2,210]	[2,660]	[3,540]	[4,430]			
E260	640	810	1,080	1,350	1,620	2,160	2,700			
E360	[1,240]	[1,550]	[2,070]	[2,590]	[3,110]	[4,140]	[5,180]			

The loads presented without brackets relate to the failure point when the female thread cut in the substrate reaches its' elastic limit (i.e. past that point the substrate is plastic).

The loads presented with square brackets relate to the failure point when the female thread cut in the substrate reaches its' plastic limit (i.e. the maximum load the substrate can achieve before it fails).

It is important to note that in all cases in Table 05, the fastener itself **does not fail**. Rather, it is the substrate which fails around the fastener.

¹⁵ Values without brackets refer to characteristic value at R_{eH} of substrate and values in [brackets] refer to characteristic value at R_m of substrate (tested in accordance with BS EN ISO 6892-1), rounded down to nearest 10 N,

¹⁶ Derived from empirical tests as per EAD No. 330046-01-0602 (as published by EOTA – European Organisation for Technical Approvals),

5.1.2 - 5.5mm diameter products:

5.1.2.1 - TEK® 3 products:

5.1.2.1.1 - Withdrawal resistance:

Table 06: Ch	naracteristic w			K [®] 3 products I steels ¹⁷ (in N	•	minal diamet	er) from hot-				
Cd		Substrate thickness, t									
Grade	1.2mm	1.5mm	2.0mm	2.5mm	3.0mm	4.0mm	5.0mm				
COOFID	970	1,220	1,620	2,030	2,440	3,250	4,070				
S235JR	[1,490]	[1,870]	[2,490]	[3,120]	[3,740]	[4,990]	[6,240]				
CAZEID	1,140	1,430	1,900	2,380	2,860	3,810	4,760				
S275JR	[1,700]	[2,130]	[2,840]	[3,550]	[4,260]	[5,680]	[7,100]				
COLLID	1,470	1,840	2,460	3,070	3,690	4,920	6,150				
S355JR	[1,950]	[2,440]	[3,250]	[4,070]	[4,880]	[6,510]	[8,140]				
C4F010	1,780	2,230	2,980	3,720	4,470	5,960	7,450				
S450J0	[2,280]	[2,860]	[3,810]	[4,760]	[5,270]	[7,620]	[9,530]				
E295	1,220	1,530	2,040	2,550	3,060	4,090	5,110				
E295	[2,030]	[2,540]	[3,390]	[4,240]	[5,090]	[6,790]	[8,490]				
E335	1,390	1,740	2,320	2,900	3,480	4,640	5,800				
E333	[2,450]	[3,060]	[4,090]	[5,110]	[6,130]	[8,180]	[10,220]				
E360	1,490	1,870	2,490	3,120	3,740	4,990	6,240				
£300	[2,870]	[3,580]	[4,780]	[5,980]	[7,170]	[9,560]	[Ultimate ¹⁸]				

The loads presented without brackets relate to the failure point when the female thread cut in the substrate reaches its' elastic limit (i.e. past that point the substrate is plastic).

The loads presented with square brackets relate to the failure point when the female thread cut in the substrate reaches its' plastic limit (i.e. the maximum load the substrate can achieve before it fails).

It is important to note that in all cases in Table 05, the fastener itself **does not fail**. Rather, it is the substrate which fails around the fastener. The exception to this is where the word "ultimate" is used. In this instance the fastener itself fails in tension and the "ultimate force at plastic limit, F_m " from Table 03 (page 04) should be used.

Page 8 of 24

¹⁷ Conforming to BS EN 10025-1,

¹⁸ "Ultimate" refers to the fact the screw fails in ultimate tensile strength as opposed to the substrate failing,

5.1.2.1.1 - <u>Lap-shearing resistance</u>:

Cuada	Substrate thickness, t									
Grade	1.2mm	1.5mm	2.0mm	2.5mm	3.0mm	4.0mm	5.0mm			
COOFID	580	730	970	1,220	1,460	1,950	2,440			
S235JR	[890]	[1,120]	[1,490]	[1,870]	[2,240]	[2,990]	[3,740]			
S275JR	680	850	1,140	1,430	1,710	2,280	2,860			
	[1,020]	[1,270]	[1,700]	[2,130]	[2,550]	[3,410]	[4,260]			
COFFID	880	1,100	1,470	1,840	2,210	2,950	3,690			
S355JR	[1,170]	[1,460]	[1,950]	[2,440]	[2,930]	[3,910]	[4,880]			
S450J0	1,070	1,340	1,780	2,230	2,680	3,570	4,470			
343010	[1,370]	[1,710]	[2,280]	[2,860]	[3,430]	[4,570]	[5,720]			
E295	730	920	1,220	1,530	1,840	2,450	3,060			
LZ33	[1,220]	[1,520]	[2,030]	[2,540]	[3,050]	[4,070]	[5,090]			
E335	830	1,040	1,390	1,740	2,090	2,780	3,480			
E333	[1,470]	[1,840]	[2,450]	[3,060]	[3,580]	[4,900]	[6,130]			
E260	890	1,120	1,490	1,870	2,240	2,990	3,740			
E360	[1 720]	[2 150]	[2 870]	[3 580]	[4 300]	[5 740]	[7 170]			

The loads presented without brackets relate to the failure point when the female thread cut in the substrate reaches its' elastic limit (i.e. past that point the substrate is plastic).

The loads presented with square brackets relate to the failure point when the female thread cut in the substrate reaches its' plastic limit (i.e. the maximum load the substrate can achieve before it fails).

It is important to note that in all cases in Table 07, the fastener itself **does not fail**. Rather, it is the substrate which fails around the fastener.

5.1.2.2 - TEK® 5 products:

5.1.2.2.1 - Withdrawal resistance:

Cuada	rolled mild structural steels (in Newtons) Substrate thickness, t								
Grade	4.0mm	5.0mm	8.0mm	10.0mm	12.5mm				
COOFID	2,220	2,780	4,450	5,560	6,950				
S235JR	[3,410]	[4,260]	[6,820]	[8,520]	[10,650]				
S275JR	2,600	3,250	5,200	6,510	8,140				
	[3,880]	[4,850]	[7,760]	[9,700]	[12,130]				
CALLID	3,360	4,200	6,720	8,400	10,500				
S355JR	[4,450]	[5,560]	[8,900]	[11,120]	[13,910]				
S450J0	4,070	5,090	8,140	10,180	12,720				
345010	[5,200]	[6,510]	[10,410]	[13,020]	[16,270]				
E295	2,790	3,490	5,580	6,980	8,730				
E295	[4,640]	[5,800]	[9,280]	[11,600]	[14,500]				
E335	3,170	3,960	6,340	7,930	9,910				
L333	[5,580]	[6,980]	[11,170]	[13,970]	[17,460]				
E360	3,410 [6,530]	4,260 [8,160]	6,820 [13,070]	8,520 [16,330]	10,650 [Ultimate				

The loads presented without brackets relate to the failure point when the female thread cut in the substrate reaches its' elastic limit (i.e. past that point the substrate is plastic).

The loads presented with square brackets relate to the failure point when the female thread cut in the substrate reaches its' plastic limit (i.e. the maximum load the substrate can achieve before it fails).

It is important to note that in all cases in Table 08, the fastener itself **does not fail**. Rather, it is the substrate which fails around the fastener. The exception to this is where the word "ultimate" is used. In this instance the fastener itself fails in tension and the "ultimate force at plastic limit, F_m " from Table 03 (page 04) should be used.

5.1.2.2.2 - <u>Lap-shearing resistance</u>:

Cuada	Substrate thickness, t									
Grade	4.0mm	5.0mm	8.0mm	10.0mm	12.5mm					
COOFID	1,330	1,660	2,670	3,330	4,170					
S235JR	[2,040]	[2,550]	[4,090]	[5,110]	[6,390]					
S275JR	1,560	1,950	3,120	3,900	4,880					
	[2,330]	[2,910]	[4,660]	[5,820]	[7,280]					
Carrin	2,010	2,520	4,030	5,040	6,300					
S355JR	[2,670]	[3,330]	[5,340]	[6,670]	[8,340]					
S450J0	2,440	3,050	4,880	6,100	7,630					
345010	[3,120]	[3,900]	[6,250]	[7,810]	[Ultimate					
E295	1,670	2,090	3,350	4,190	5,230					
E295	[2,780]	[3,480]	[5,560]	[6,960]	[8,700]					
E22E	1,900	2,380	3,800	4,760	5,940					
E335	[3,350]	[4,190]	[6,700]	[8,380]	[Ultimate					
E360	2,040	2,550	4,090	5,110	6,390					
E300	[3,920]	[4,900]	[7,840]	[Ultimate]	[Ultimate]					

The loads presented without brackets relate to the failure point when the female thread cut in the substrate reaches its' elastic limit (i.e. past that point the substrate is plastic).

The loads presented with square brackets relate to the failure point when the female thread cut in the substrate reaches its' plastic limit (i.e. the maximum load the substrate can achieve before it fails).

It is important to note that in all cases in Table 09, the fastener itself **does not fail**. Rather, it is the substrate which fails around the fastener. The exception to this is where the word "ultimate" is used. In this instance the fastener itself fails in tension and the "ultimate force at shear failure, V_m " from Table 03 (page 04) should be used.

5.1.3 - 6.3mm diameter products:

5.1.3.1 - TEK® 3 products:

5.1.3.1.1 - Withdrawal resistance

Table 10: Ch	aracteristic w			® 3 products (steels ¹⁹ (in No	-	minal diamete	er) from hot-				
C		Substrate thickness, t									
Grade	1.2mm	1.5mm	2.0mm	2.5mm	3.0mm	4.0mm	5.0mm				
COOFID	680	850	1,130	1,410	1,700	2,270	2,830				
S235JR	[1,040]	[1,300]	[1,730]	[2,170]	[2,600]	[3,470]	[4,340]				
S275JR	790	990	1,320	1,660	1,990	2,650	3,320				
32/3JK	[1,180]	[1,480]	[1,980]	[2,470]	[2,970]	[3,960]	[4,940]				
CALLID	1,020	1,280	1,710	2,140	2,570	3,420	4,280				
S355JR	[1,360]	[1,700]	[2,270]	[2,830]	[3,400]	[4,530]	[5,670]				
S450J0	1,240	1,550	2,070	2,590	3,110	4,150	5,190				
345010	[1,590]	[1,990]	[2,650]	[3,320]	[3,980]	[5,310]	[6,640]				
E295	850	1,060	1,420	1,780	2,130	2,840	3,560				
E295	[1,420]	[1,770]	[2,360]	[2,950]	[3,540]	[4,730]	[5,910]				
E335	970	1,210	1,610	2,020	2,420	3,230	4,040				
E333	[1,700]	[2,130]	[2,840]	[3,560]	[4,270]	[5,690]	[7,120]				
E260	1,040	1,300	1,730	2,170	2,600	3,470	4,340				
E360	[1,990]	[2,490]	[3,330]	[4,160]	[4,990]	[6,660]	[8,330]				

The loads presented without brackets relate to the failure point when the female thread cut in the substrate reaches its' elastic limit (i.e. past that point the substrate is plastic).

The loads presented with square brackets relate to the failure point when the female thread cut in the substrate reaches its' plastic limit (i.e. the maximum load the substrate can achieve before it fails).

It is important to note that in all cases in Table 10, the fastener itself **does not fail**. Rather, it is the substrate which fails around the fastener.

¹⁹ Conforming to BS EN 10025-1,

5.1.3.1.2 - <u>Lap-shearing resistance</u>:

	1	hot-rolled	l mild structur	al steels (in	Newtons)					
Grade	Substrate thickness, t									
Grade	1.2mm	1.5mm	2.0mm	2.5mm	3.0mm	4.0mm	5.0mm			
S235JR	400	510	680	850	1,020	1,360	1,700			
3233JK	[620]	[780]	[1,040]	[1,300]	[1,560]	[2,080]	[2,600]			
S275JR	470	590	790	990	1,190	1,590	1,990			
32/3JK	[710]	[890]	[1,180]	[1,480]	[1,780]	[2,370]	[2,970]			
CAEEID	610	770	1,020	1,280	1,540	2,050	2,570			
S355JR	[810]	[1,020]	[1,360]	[1,700]	[2,040]	[2,720]	[3,400]			
CAFOIO	740	930	1,240	1,550	1,860	2,490	3,110			
S450J0	[950]	[1,190]	[1,590]	[1,990]	[2,390]	[3,180]	[3,980]			
E295	510	640	850	1,060	1,280	1,700	2,130			
E295	[850]	[1,060]	[1,420]	[1,770]	[2,120]	[2,830]	[3,540]			
F22F	580	720	970	1,210	1,450	1,940	2,420			
E335	[1,020]	[1,280]	[1,700]	[2,130]	[2,560]	[3,410]	[4,270]			
F260	620	780	1,040	1,300	1,560	2,080	2,600			
E360	[1,190]	[1,490]	[1,990]	[2,490]	[2,990]	[3,990]	[4,990]			

The loads presented without brackets relate to the failure point when the female thread cut in the substrate reaches its' elastic limit (i.e. past that point the substrate is plastic).

The loads presented with square brackets relate to the failure point when the female thread cut in the substrate reaches its' plastic limit (i.e. the maximum load the substrate can achieve before it fails).

It is important to note that in all cases in Table 11, the fastener itself **does not fail**. Rather, it is the substrate which fails around the fastener.

5.1.3.2 - TEK® 5 products:

5.1.3.2.1 - Withdrawal resistance:

able 11: Characteristic withdrawal resistance of TEK® 5 products (of 6.3mm nominal diameter) from hot- rolled mild structural steels (in Newtons)									
Cuada	Substrate thickness, t								
Grade	4.0mm	5.0mm 8.0mm		10.0mm	12.5mm				
CAREID	1,890	2,360	3,790	4,730	5,920				
S235JR	[2,900]	[3,620]	[5,800]	[7,250]	[9,070]				
CAZEID	2,210	2,770	4,430	5,540	6,920				
S275JR	[3,300]	[4,130]	[6,610]	[8,260]	[10,330]				
CALLID	2,860	3,570	5,720	7,150	8,940				
S355JR	[3,790]	[4,730]	[7,570]	[9,470]	[11,840]				
CAFOIO	3,460	4,330	6,930	8,660	10,830				
S450J0	[4,430]	[5,540]	[8,860]	[11,080]	[13,850]				
F20F	2,370	2,970	4,750	5,940	7,430				
E295	[3,950]	[4,930]	[7,900]	[9,870]	[12,340]				
E22E	2,700	3,370	5,400	6,750	8,440				
E335	[4,750]	[5,940]	[9,510]	[11,890]	[14,860]				
F360	2,900	3,620	5,800	7,250	9,070				
E360	[5,560]	[6,950]	[11,120]	[13,900]	[17,380]				

The loads presented without brackets relate to the failure point when the female thread cut in the substrate reaches its' elastic limit (i.e. past that point the substrate is plastic).

The loads presented with square brackets relate to the failure point when the female thread cut in the substrate reaches its' plastic limit (i.e. the maximum load the substrate can achieve before it fails).

It is important to note that in all cases in Table 11, the fastener itself **does not fail**. Rather, it is the substrate which fails around the fastener.

5.1.3.2.2 - <u>Lap-shearing resistance</u>:

Cuada	Substrate thickness, t								
Grade	4.0mm	5.0mm	8.0mm	10.0mm	12.5mm				
COOFID	1,130	1,420	2,270	2,840	3,550				
S235JR	[1,740]	[2,170]	[3,480]	[4,350]	[5,440]				
S275JR	1,330	1,660	2,660	3,320	4,150				
32/3JK	[1,980]	[2,470]	[3,960]	[4,950]	[6,190]				
S355JR	1,710	2,140	3,430	4,290	5,360				
	[2,270]	[2,840]	[4,540]	[5,680]	[7,100]				
545010	2,080	2,600	4,160	5,200	6,500				
S450J0	[2,660]	[3,320]	[5,320]	[6,650]	[8,310]				
E295	1,420	1,780	2,850	3,560	4,460				
E295	[2,370]	[2,960]	[4,740]	[5,920]	[7,400]				
E335	1,620	2,020	3,240	4,050	5,060				
E333	[2,850]	[3,560]	[5,700]	[7,130]	[8,920]				
E360	1,740	2,170	3,480	4,350	5,440				
E360	1,740	2,170 [4 170]	3,480 [6,670]	4,350 [8 340]	5,44				

The loads presented without brackets relate to the failure point when the female thread cut in the substrate reaches its' elastic limit (i.e. past that point the substrate is plastic).

The loads presented with square brackets relate to the failure point when the female thread cut in the substrate reaches its' plastic limit (i.e. the maximum load the substrate can achieve before it fails).

It is important to note that in all cases in Table 12, the fastener itself **does not fail**. Rather, it is the substrate which fails around the fastener.

5.2 - Cold-rolled mild structural steel (as per BS EN 10346):

5.2.1 - <u>TEK® 3 products</u>:

5.2.1.1 – **4.8mm diameter products**:

5.2.1.1.1 - Withdrawal resistance:

Table 13:	Table 13: Characteristic withdrawal resistance of TEK® 3 products (of 4.8mm nominal diameter) from									
		cold-rolle	d mild structu	ral steels ²⁰ (in	Newtons)					
Grade	Substrate thickness, t									
Grade	1.2mm	1.5mm	2.0mm	2.5mm	3.0mm	4.0mm	5.0mm			
DX52D	650	820	1,090	1,370	1,640	2,190	2,740			
DASZD	[1,030]	[1,280]	[1,710]	[2,140]	[2,570]	[3,430]	[4,290]			
DVEAD	500	630	840	1,050	1,270	1,690	2,110			
DX54D	[910]	[1,140]	[1,520]	[1,900]	[2,280]	[3,040]	[3,800]			
DX56D	440	560	740	930	1,120	1,490	1,860			
DV20D	[890]	[1,120]	[1,490]	[1,860]	[2,240]	[2,990]	[3,730]			
C220CD	650	820	1,090	1,370	1,640	2,190	2,740			
S220GD	[900]	[1,130]	[1,500]	[1,870]	[2,250]	[3,000]	[3,740]			
C300CD	830	1,040	1,390	1,740	2,090	2,790	3,480			
S280GD	[1,070]	[1,340]	[1,790]	[2,240]	[2,690]	[3,580]	[4,480]			
S320GD	950	1,190	1,590	1,990	2,390	3,180	3,980			
332000	[1,160]	[1,450]	[1,940]	[2,420]	[2,910]	[3,880]	[4,850]			
SZEOCD	1,040	1,300	1,740	2,180	2,610	3,480	4,360			
S350GD	[1,250]	[1,570]	[2,090]	[2,610]	[3,140]	[4,180]	[5,230]			

The loads presented without brackets relate to the failure point when the female thread cut in the substrate reaches its' elastic limit (i.e. past that point the substrate is plastic).

The loads presented with square brackets relate to the failure point when the female thread cut in the substrate reaches its' plastic limit (i.e. the maximum load the substrate can achieve before it fails).

It is important to note that in all cases in Table 13, the fastener itself **does not fail**. Rather, it is the substrate which fails around the fastener.

²⁰ Conforming to BS EN 10346.

5.2.1.1.2 - <u>Lap-shearing resistance</u>:

cold-rolled mild structural steels (in Newtons)											
Grade		Substrate thickness, t									
Grade	1.2mm	1.5mm	2.0mm	2.5mm	3.0mm	4.0mm	5.0mm				
DX52D	390	490	650	820	980	1,310	1,640				
עאטעט	[610]	[770]	[1,030]	[1,280]	[1,540]	[2,060]	[2,570]				
DVEAD	300	380	500	630	760	1,010	1,270				
DX54D	[540]	[680]	[910]	[1,140]	[1,360]	[1,820]	[2,280]				
57/205	260	330	440	560	670	890	1,120				
DX56D	[530]	[670]	[890]	[1,120]	[1,340]	[1,790]	[2,240]				
COOCD	390	490	650	820	980	1,310	1,640				
S220GD	[540]	[680]	[900]	[1,130]	[1,350]	[1,800]	[2,250]				
COOCD	500	620	830	1,040	1,250	1,670	2,090				
S280GD	[640]	[800]	[1,070]	[1,340]	[1,610]	[2,150]	[2,690]				
COOCD	570	710	950	1,190	1,430	1,910	2,390				
S320GD	[700]	[870]	[1,160]	[1,450]	[1,740]	[2,330]	[2,910]				
COEOCD	620	780	1,040	1,300	1,570	2,090	2,610				
S350GD	[750]	[940]	[1,250]	[1,570]	[1,880]	[2,510]	[3,140]				

The loads presented without brackets relate to the failure point when the female thread cut in the substrate reaches its' elastic limit (i.e. past that point the substrate is plastic).

The loads presented with square brackets relate to the failure point when the female thread cut in the substrate reaches its' plastic limit (i.e. the maximum load the substrate can achieve before it fails).

It is important to note that in all cases in Table 14, the fastener itself **does not fail**. Rather, it is the substrate which fails around the fastener.

5.2.1.2 – **5.5mm diameter products**:

5.2.1.2.1 - Withdrawal resistance:

	cold-rolled mild structural steels ²¹ (in Newtons) Substrate thickness, t							
Grade	1.2mm	1.5mm	2.0mm	2.5mm	3.0mm	4.0mm	5.0mm	
DVE2D	910	1,130	1,510	1,890	2,270	3,030	3,790	
DX52D	[1,420]	[1,780]	[2,370]	[2,970]	[3,560]	[4,750]	[5,940]	
DVEAD	700	870	1,170	1,460	1,750	2,340	2,930	
DX54D	[1,260]	[1,570]	[2,100]	[2,620]	[3,150]	[4,200]	[5,250]	
27/202	620	770	1,030	1,290	1,550	2,060	2,580	
DX56D	[1,240]	[1,550]	[2,060]	[2,580]	[3,100]	[4,130]	[5,170]	
COOCD	910	1,130	1,510	1,890	2,270	3,030	3,790	
S220GD	[1,250]	[1,560]	[2,070]	[2,590]	[3,110]	[4,140]	[5,180]	
COOCD	1,150	1,440	1,930	2,410	2,890	3,860	4,820	
S280GD	[1,480]	[1,860]	[2,480]	[3,100]	[3,720]	[4,960]	[6,200]	
caanch	1,320	1,650	2,200	2,750	3,310	4,410	5,510	
S320GD	[1,610]	[2,010]	[2,680]	[3,360]	[4,030]	[5,370]	[6,720]	
COENCD	1,440	1,810	2,410	3,010	3,620	4,820	6,030	
S350GD	[1,730]	[2,170]	[2,890]	[3,620]	[4,340]	[5,790]	[7,240]	

The loads presented without brackets relate to the failure point when the female thread cut in the substrate reaches its' elastic limit (i.e. past that point the substrate is plastic).

The loads presented with square brackets relate to the failure point when the female thread cut in the substrate reaches its' plastic limit (i.e. the maximum load the substrate can achieve before it fails).

It is important to note that in all cases in Table 15, the fastener itself **does not fail**. Rather, it is the substrate which fails around the fastener.

²¹ Conforming to BS EN 10346.

5.2.1.2.2 - <u>Lap-shearing resistance</u>:

Table 16: Characteristic lap-shearing resistance of TEK® 3 products (of 5.5mm nominal diameter) from cold-rolled mild structural steels (in Newtons)										
Cuada	Substrate thickness, t									
Grade	1.2mm	1.5mm	2.0mm	2.5mm	3.0mm	4.0mm	5.0mm			
סערמס	540	680	910	1,130	1,360	1,820	2,270			
DX52D	[850]	[1,070]	[1,420]	[1,780]	[2,140]	[2,850]	[3,560]			
DVE4D	420	520	700	870	1,050	1,400	1,750			
DX54D	[750]	[940]	[1,260]	[1,570]	[1,890]	[2,520]	[3,150]			
51/565	370	460	620	770	930	1,240	1,550			
DX56D	[740]	[930]	[1,240]	[1,550]	[1,860]	[2,480]	[3,100]			
622065	540	680	910	1,130	1,360	1,820	2,270			
S220GD	[750]	[940]	[1,250]	[1,560]	[1,870]	[2,490]	[3,110]			
COOCD	690	860	1,150	1,440	1,730	2,310	2,890			
S280GD	[890]	[1,110]	[1,480]	[1,860]	[2,230]	[2,970]	[3,720]			
C220CD	790	990	1,320	1,650	1,980	2,640	3,310			
S320GD	[960]	[1,210]	[1,610]	[2,010]	[2,420]	[3,220]	[4,030]			
COLOCE	860	1,080	1,440	1,810	2,170	2,890	3,620			
S350GD	[1,040]	[1,300]	[1,730]	[2,170]	[2,600]	[3,470]	[4,340]			

The loads presented without brackets relate to the failure point when the female thread cut in the substrate reaches its' elastic limit (i.e. past that point the substrate is plastic).

The loads presented with square brackets relate to the failure point when the female thread cut in the substrate reaches its' plastic limit (i.e. the maximum load the substrate can achieve before it fails).

It is important to note that in all cases in Table 16, the fastener itself **does not fail**. Rather, it is the substrate which fails around the fastener.

5.2.1.3 – <u>6.3mm diameter products</u>:

5.2.1.3.1 - Withdrawal resistance:

	cold-rolled mild structural steels ²² (in Newtons) Substrate thickness, t									
Grade	1.2mm	1.5mm	2.0mm	2.5mm	3.0mm	4.0mm	5.0mm			
DX52D	630	790	1,060	1,320	1,590	2,120	2,650			
DX3ZD	[1,000]	[1,240]	[1,660]	[2,080]	[2,490]	[3,330]	[4,160]			
DVEAD	490	610	820	1,020	1,230	1,640	2,050			
DX54D	[880]	[1,100]	[1,470]	[1,840]	[2,200]	[2,940]	[3,680]			
DVECD	430	540	720	900	1,080	1,440	1,810			
DX56D	[860]	[1,080]	[1,440]	[1,810]	[2,170]	[2,890]	[3,620]			
COOCE	630	790	1,060	1,320	1,590	2,120	2,650			
S220GD	[870]	[1,090]	[1,450]	[1,820]	[2,180]	[2,900]	[3,630]			
COOCD	810	1,010	1,350	1,690	2,020	2,700	3,380			
S280GD	[1,040]	[1,300]	[1,730]	[2,170]	[2,600]	[3,470]	[4,340]			
COOCD	920	1,150	1,540	1,930	2,310	3,090	3,860			
S320GD	[1,130]	[1,410]	[1,880]	[2,350]	[2,820]	[3,760]	[4,700]			
COENCE	1,010	1,260	1,690	2,110	2,530	3,380	4,220			
S350GD	[1,210]	[1,520]	[2,020]	[2,530]	[3,040]	[4,050]	[5,070]			

The loads presented without brackets relate to the failure point when the female thread cut in the substrate reaches its' elastic limit (i.e. past that point the substrate is plastic).

The loads presented with square brackets relate to the failure point when the female thread cut in the substrate reaches its' plastic limit (i.e. the maximum load the substrate can achieve before it fails).

It is important to note that in all cases in Table 17, the fastener itself **does not fail**. Rather, it is the substrate which fails around the fastener.

²² Conforming to BS EN 10346.

5.2.1.3.2 - <u>Lap-shearing resistance</u>:

Table 18: Characteristic lap-shearing resistance of TEK® 3 products (of 6.3mm nominal diameter) from cold-rolled mild structural steels (in Newtons)										
Cuada	Substrate thickness, t									
Grade	1.2mm	1.5mm	2.0mm	2.5mm	3.0mm	4.0mm	5.0mm			
DVE3D	380	470	630	790	950	1,270	1,590			
DX52D	[600]	[750]	[1,000]	[1,240]	[1,490]	[1,990]	[2,490]			
DX54D	290	360	490	610	730	980	1,230			
DX54D	[530]	[660]	[880]	[1,100]	[1,320]	[1,760]	[2,200]			
DVECD	260	320	430	540	650	860	1,080			
DX56D	[520]	[650]	[860]	[1,080]	[1,300]	[1,730]	[2,170]			
S220GD	380	470	630	790	950	1,270	1,590			
3220GD	[530]	[660]	[870]	[1,090]	[1,310]	[1,740]	[2,180]			
COOCD	480	600	800	1,010	1,210	1,620	2,020			
S280GD	[620]	[780]	[1,040]	[1,300]	[1,560]	[2,080]	[2,600]			
S320GD	550	690	920	1,150	1,390	1,850	2,310			
	[670]	[840]	[1,130]	[1,410]	[1,690]	[2,260]	[2,820]			
COEOCD	600	760	1,010	1,260	1,520	2,020	2,530			
S350GD	[730]	[910]	[1,210]	[1,520]	[1,820]	[2,430]	[3,040]			

The loads presented without brackets relate to the failure point when the female thread cut in the substrate reaches its' elastic limit (i.e. past that point the substrate is plastic).

The loads presented with square brackets relate to the failure point when the female thread cut in the substrate reaches its' plastic limit (i.e. the maximum load the substrate can achieve before it fails).

It is important to note that in all cases in Table 18, the fastener itself **does not fail**. Rather, it is the substrate which fails around the fastener.

6.0 - Normative references and notes:

IMPORTANT NOTICE 01:

All values provided in this document are **characteristic values**, specifically meaning that they are expressed as the mean ultimate value (from a dataset generated from the results of empirical testing in our UKAS accredited testing laboratory) minus two standard deviations. This is in-line with standard practice using Central Limit Theorem in accordance with UKAS Document M3003 "*The Expression of Uncertainty and Confidence in Measurement*" (3rd Edition).

Individual test results are validated using the Z-score method in ISO/IEC Guide No. 43-1 "Proficiency testing by interlaboratory comparisons" and the EN ratio method in UKAS Document LAB 46 "UKAS Policy for Participation in Measurement Audits and Interlaboratory Comparisons" (3rd Edition).

As such <u>no</u> values provided in this datasheet have been treated with a factor of safety. It is the responsibility of the user of this document to use a factor of safety appropriate to their designs.

From our experience²³, designers have their own favoured approach. Some prefer to use a conservative approach as (1) below, others prefer a method used in Eurocodes²⁴ as per (2) below:

(1)
$$y_m = 3.0$$

(2)
$$\gamma_m = (\gamma_{ak} \cdot \gamma_{ak}) = (1.35 \times 1.50) = 2.025$$

IMPORTANT NOTICE 02:

Applicable DoPs (Declaration of Performance) and ETAs (European Technical Assessments) for Evolution Fasteners products can be found on our website (www.evolutionfasteners.co.uk). Please note that not all products fall under the mandatory CE marking requirements pursuant to European Regulation No. 305/2011 (commonly referred to as the Construction Products Regulations).

Certificates of Conformance are available upon request from the Evolution Technical Department and follow the form of F2.1 "Fastener Inspection Documents" pursuant to the requirements of BS EN ISO 16228: 2018 (and subsequently BS EN ISO 3269: 2001).

For further information or to discuss details relating to the information published in this document, please contact the Evolution Technical Department.

²³ This is not an instruction nor does it alleviate the responsibilities of the reader, designer or any other third party,

²⁴ BS EN 1993-1-1 (Eurocode 3).

NORMATIVE REFERENCES:

BS EN ISO 9001: 2015 "Quality management systems. Requirements.",

BS EN ISO/IEC 17025: 2017 *"General requirements for the competence of testing and*

calibration laboratories.",

BS EN ISO 9227: 2017 "Corrosion tests in artificial atmospheres. Salt spray tests.",

BS EN ISO 12944-2: 2017 *"Paints and varnishes. Corrosion protection of steel structures by*

protective paint systems. Classification of environments.",

BS EN ISO 9223: 2012 "Corrosion of metals and alloys. Corrosivity of atmospheres.

Classification, determination and estimation.",

BS EN 3506-1: 2009 "Mechanical properties of corrosion-resistant stainless-steel

fasteners. Bolts, screws and studs.",

BS EN 10088-3: 2014 "Stainless steels. Technical delivery conditions for semi-finished

products, bards, rods, wires, sections and bright products of

corrosion resisting steels for general purposes.",

BS EN ISO 6892-1: 2016^{NC} "Metallic materials. Tensile testing. Method of test at room

temperature.",

BS ISO/IEC Guide 43-1: 1997 *"Proficiency testing by interlaboratory comparisons. Part 1:*

Development and operation of proficiency testing schemes.",

UKAS Document M3003 "The expression of uncertainty and confidence in measurement. 3rd

Edition.". Published by the United Kingdom Accreditation Service on behalf of HM Government's Department for Business,

Innovation and Skills,

MIL-STD-1312-13^{NC} "Military Standard: Fastener test methods (method 13), double

shear test.". Published by the United States Department of

Defence,

BS EN ISO 10666: 1999NC "Drilling screws with tapping screw threads. Mechanical and

functional properties.",

BS EN 10025-1: 2004 *"Hot rolled products of structural steels. General technical delivery*

conditions.",

BS EN 14566: 2008 & A1: 2009 "Mechanical fasteners for gypsum plasterboard systems.

Definitions, requirements and test methods.",

EAD 330046-01-0602 "European Assessment Document: Fastening screws for metal

members and sheeting.". Published by the European Organisation

for Technical Assessments,

Page 23 of 24

Engineering Specification: TSHW & TSBW Ranges (Ver 2.0 – June 2019)

©Evolution Fasteners (UK) Ltd (2019), Clyde Gateway Trade Park, Dalmarnock Road, Glasgow, G73 1AN. Tests marked "NC" in this document are not included in the UKAS schedule of accreditation for our laboratory. Opinions and interpretations expressed herein are outside the scope of UKAS accreditation. This document shall not be reproduced except in full, without written approval. This document does not absolve any third party of their obligations under the Building Regulations, the Construction (Design and Management) Regulations or any other burden. This document is provided for educational purposes only and is provided without prejudice, without recourse, non-assumptist, errors and omissions excepted, no assured value, no liability, all rights reserved.

BS EN 10346: 2015 "Continuously hot-dip coated steel flat products for cold forming.

Technical delivery conditions.",

BS EN 485-2: 2016 & A1: 2018 "Aluminium and aluminium alloys. Sheet, strip and plate.

Mechanical properties.",

BS EN 1993-1-1: 2005 & A1: 2014 "Eurocode 3: Design of steel structures. General rules and rules for

buildings.",

UKAS Document LAB 46 "UKAS policy for participation in measurement audits and

interlaboratory comparisons. 3rd Edition.". Published by the United Kingdom Accreditation Service on behalf of HM Government's

Department for Business, Innovation and Skills,

BS EN ISO 16228: 2018 "Fasteners. Types of inspection documents.",

BS EN ISO 3269: 2001 *"Fasteners. Acceptance inspection."*.

DISCLAIMER:

This document is provided for educational purposes only and remains the intellectual property of Evolution Fasteners (UK) Ltd. The information provided in this document does not alleviate any responsibility on the part of any third party, nor does Evolution Fasteners (UK) Ltd accept any liability for any failures in practice, design or otherwise by any third parties using this document.

Evolution Fasteners (UK) Ltd retain all rights in relation to this document. This document shall not be reproduced except in full, without written approval from Evolution Fasteners (UK) Ltd.

Whilst every effort was made to ensure that all information in this document is accurate, it is provided strictly on the basis errors and omissions excepted.

It is the recommendation of Evolution Fasteners (UK) Ltd that any third party seeking to use our products should enquire directly with the Evolution Technical Department either by e-mail to technical@evolutionfasteners.co.uk or phone call to +44 (0) 141 647 7100. Written enquires can be made to:

Technical Department and Laboratory Services Evolution Fasteners (UK) Ltd Clyde Gateway Trade Park Dalmarnock Road Glasgow G73 1AN United Kingdom

[END OF DOCUMENT]

Page **24** of **24**